A Monoidal Category for Perturbed Defects in Conformal Field Theory

نویسندگان

  • Dimitrios Manolopoulos
  • Ingo Runkel
چکیده

Starting from an abelian rigid braided monoidal category C we define an abelian rigid monoidal category CF which captures some aspects of perturbed conformal defects in two-dimensional conformal field theory. Namely, for V a rational vertex operator algebra we consider the charge-conjugation CFT constructed form V (the Cardy case). Then C = Rep(V ) and an object in CF corresponds to a conformal defect condition together with a direction of perturbation. We assign to each object in CF an operator on the space of states of the CFT, the perturbed defect operator, and show that the assignment factors through the Grothendieck ring of CF . This allows one to find functional relations between perturbed defect operators. Such relations are interesting because they contain information about the integrable structure of the CFT. Email: [email protected] Email: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Centre of an algebra

Motivated by algebraic structures appearing in Rational Conformal Field Theory we study a construction associating to an algebra in a monoidal category a commutative algebra (full centre) in the monoidal centre of the monoidal category. We establish Morita invariance of this construction by extending it to module categories. As an example we treat the case of group-theoretical categories.

متن کامل

Perturbed Defects and T-Systems in Conformal Field Theory

Defect lines in conformal field theory can be perturbed by chiral defect fields. If the unperturbed defects satisfy su(2)-type fusion rules, the operators associated to the perturbed defects are shown to obey functional relations known from the study of integrable models as T-systems. The procedure is illustrated for Virasoro minimal models and for Liouville theory. Email: [email protected]

متن کامل

Topological and conformal field theory as Frobenius algebras

math.CT/0512076 KCL-MTH-05-15 ZMP-HH/05-23 Hamburger Beiträge zur Mathematik Nr. 225 Two-dimensional conformal field theory (CFT) can be defined through its correlation functions. These must satisfy certain consistency conditions which arise from the cutting of world sheets along circles or intervals. The construction of a (rational) CFT can be divided into two steps, of which one is complex-an...

متن کامل

On Homotopy Invariance for Algebras over Colored Props

Over a monoidal model category, under some mild assumptions, we equip the categories of colored PROPs and their algebras with projective model category structures. A BoardmanVogt style homotopy invariance result about algebras over cofibrant colored PROPs is proved. As an example, we define homotopy topological conformal field theories and observe that such structures are homotopy invariant.

متن کامل

Monoidal closedness of $L$-generalized convergence spaces

In this paper, it is shown that the category of stratified $L$-generalized convergence spaces is monoidal closed if the underlying truth-value table $L$ is a complete residuated lattice. In particular, if the underlying truth-value table $L$ is a complete Heyting Algebra, the Cartesian closedness of the category is recaptured by our result.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009